EINFLUß DER SENSOR-ZEITKONSTANTEN AUF DIE AUSWERTBARKEIT VON TA-DATEN

H. L. Anderson, A. Kemmler, K. Heldt und R. Strey

Institut für Physikalische Chemie der Universität Greifswald, Soldtmannstr. 23, D-17489 Greifswald, Deutschland

(Eingegangen Februar 10, 1996)

Abstract

All temperature sensors have a finitely time constant. The influence of the sensor time constant τ_s on the results of kinetic evaluation is demonstrated at four reaction types. The ignorance of the sensor indolence gives incorrect activation parameters. Therefore the determination of τ_s is necessary.

For the estimation of parameters the nonlinear evaluation program TA-kin was used. With its help it is possible to find the real parameters, also when $\tau_s = 32$ s, if the real τ_s -value was entered.

Keywords: kinetics, non-linear optimization, reactor time constants, software, time constants of sensors

Einleitung

Die Thermische Analyse ist in den letzten Jahrzehnten zunehmend als Methode diskutiert worden, mit deren Hilfe die Kinetik von chemischen Prozessen interpretiert werden kann [1, 2]. Im Rahmen derartiger kinetischer Betrachtungen wird sehr häufig der Versuch unternommen, die typischen Parameter der kinetischen Prozeßbeschreibung zu ermitteln. Dabei besteht meist der Wunsch, allein aus Dateien der Thermischen Analyse bzw. der Kalorimetrie Geschwindigkeitskonstanten und deren Temperaturabhängigkeit zu gewinnen. In dieser Weise hat es in der Vergangenheit eine Vielzahl von Ansätzen gegeben, die unter Heranziehung von linearisierenden Auswerteverfahren als Aktivierungsparameter die Aktivierungsenergie E_A sowie den präexponentiellen Faktor k_o zu berechnen [3–5].

Auf einem formal gleichen Wege sind u.a. auch die kinetischen Parameter für Festkörpereaktionen ermittelt worden. Charakteristisch für die vorliegenden Be-richte in der Literatur ist die Tatsache, daß für eine bestimmte chemische Reaktion nicht von jedem Autor derselbe Parametersatz abgeleitet werden konnte. Vielmehr traten in der Regel sehr stark streuende kinetische Parameter auf. Dieser Fakt war der Anlaß zu einer immer gegensätzlicher werdenden Diskussion über den rationalen Sinn kinetischer Analysen in der Festkörperchemie.

Diese Umstände haben den Wunsch entstehen lassen, durch Vergleich von simultan in verschiedenen Laboratorien erzielten Ergebnissen festzustellen, ob bei Einsatz identischer Chemikalien sowie bei Anwendung des gleichen kinetischen Auswerteverfahrens eine befriedigende Übereinstimmung gefunden werden kann (Europäisches Ringexperiment).

Es zeigte sich spätestens an dieser Stelle, daß die Anwendung linearisierender Methoden aus mehreren Gründen nicht empfohlen werden kann. Erstens sind fast alle linearisierenden Verfahren, die ohne zusätzliche Korrekturen durchgeführt werden, aus mathematischen Näherungen hervorgegangen und zweitens führen derartige Verfahren zwangsläufig zu einer ungleichen Bewertung der Meßergebnisse für die einzelnen Kurventeile. Startregion, Hauptreaktionsbereich und Reaktionausklang können schon wegen ihrer unterschiedlichen experimentellen Sicherheit nicht gleichberechtigt in die Auswertung eingehen. Eine identisch angenommene experimentelle Datenstreuung hat im Startbereich eine ganz andere Wirkung als im Bereich des Hauptprozesses u.s.w. Nunmehr gibt es Softwareprogramme, die aufgrund ihrer mathematischen Eigenschaften prinzipiell die genannten Schwächen vermeiden können (Thermokinetic Analysis Multiple Scan [6] TA-kin [7], Kinetics MK [8], BatchCad [9]). Sie gehen die bekannten Wege der nichtlinearen Regression bzw. nutzen die neuen Prozeduren der Parameteranpassung durch nichtlineare Optimierung (NLO). In unseren Laboratorien sind die vier genannten Softwareprogramme angewendet und verglichen worden. Wie sich zeigte, sind die mathematischen Unterschiede gradueller Natur, wobei die Anwendungsgebiete jedoch durchaus unterschiedlich angelegt sind.

Zu den höchstentwickelten Produkten kann das von uns bevorzugte Softwarepaket TA-kin gerechnet werden, da es durch seine anwenderfreundliche Oberfläche und die große Zahl der vordefinierten Modelle sowie die aussagekräftige grafische Darstellung für einfache und komplexe Reaktionen sich besonders auszeichnet. Es entstand an der Universität Greifswald unter Nutzung der Programme von Tiller und Mathiszik aus Halle/Sa. Als wesentliche Erleichterung gilt dabei der komfortable Im- und Export von Dateien.

Bei mehr als 1000-facher Anwendung nichtlinearer Prozeduren ergaben sich Erfahrungen, die den kritischen Blick für die kinetische Auswertung von chemischen Reaktionen sehr geschärft haben.

Die Probleme, welche sich aus der mathematischen Struktur dieser Verfahren ableiten [10], sind gerade in jüngster Zeit vertieft behandelt worden [11]. Wesentliche Aspekte beziehen sich jedoch auf die Notwendigkeit der genaueren Beschreibung der experimentellen Bedingungen und deren sichere Einhaltung. Hierher gehört die Notwendigkeit der Homogenität bezüglich der Temperatur und der Konzentrationen im reagierenden Medium, was bei Flüsigphasenreaktionen kaum, aber bei Festkörpereaktionen eine eminente Rolle spielt.

Im Mittelpunkt der vorliegenden Betrachtung soll jedoch ein anderer Einfluß stehen, der bei der Durchführung kinetischer Auswertungen in den seltensten Fällen beachtet wird. Es handelt sich um die Tatsache, daß bei allen Experimenten, deren Verlauf durch die Aufnahme von Temperatursignalen gekennzeichnet wird, die Trägheit des Temperaturmeßinstruments gemeinsam mit dem Temperatursensor einen erheblichen Einfluß gewinnen kann. Gehen wir davon aus, daß Sensoren mit endlichen Zeitkonstanten τ_s zum Einsatz kommen, so führt dies schon bei den Temperatur-Zeit-Dateien zu einer Deformation, die sich um so stärker auswirken muß, desto größer diese Zeitkonstanten sind und desto schneller die Temperaturänderungen eintreten.

Im Zusammenhang mit den oben genannten europäischen Ringexperiment wurde auch diese Frage intensiv von uns untersucht.

Da die nichtlineare Optimierung mit einer Parameterschar zu rechnen hat, die leicht durch Kurvendeformationen beeinflußt werden kann, haben wir vier Modellreaktionen unter Variation ihrer Bedingungen einerseits und gleichzeitig unter Variation der Sensorträgheit τ_s betrachtet. Um der Realität weiter Rechnung zu tragen, wurden auch die Reaktoren mit ihrem Temperaturträgheitsverhalten τ_R einbezogen (Tabelle 1, 2).

	Typ 1	Typ 2
$\ln(k_o/s)$	21.00	21.00
E _A /kJ	65.00	65.00
$\Delta H/kJ mol^{-1}$	-70.00	-70.00
Umgebungstemperatur/°C	20.00	30.00
Anfangskoncentration A/mol 1 ⁻¹	1.00	3.00
Anfangskoncentration B/mol I ⁻¹	1.00	1.00
Reaktionsvolumen/ml	40.00	40.00
Wärmekapacität/J K ⁻¹	100.00	100.00
Wärmeübergangskonstante/W K ⁻¹	0.25	0.25
Reaktorzeitkonstante/s	400.00	400.00

Tabelle 1 Experimentelle Bedingungen der simulierten einfachen Reaktionen $A + B \rightarrow C$

Die Typen 1 und 2 unterscheiden sich in der Anfangstemperatur bzw. Ausgangskonzentration. Typ 3 und 4 entsprechen einer Folgereaktion, wobei die Aktivierungsparameter für Typ 3 so gewählt wurden, daß etwa gleiche Geschwindigkeiten für beide Schritte zu erwarten sind. Im Gegensatz dazu läuft im Typ 4 der Folgeschritt deutlich langsamer ab. Aus der Zahl der Bedingungen ist abzulesen, daß eine Variation aller Größen zu einer vielfach-dimensionalen Darstellung führen würde.

Daher ist die Festlegung auf vier Reaktionsbedingungen noch überschaubar und gleichzeitig geeignet für die Repräsentation des Grundverhaltens. Für jeden der vier Reaktionstypen wurde die Sensorzeitkonstante τ_s mit den Werten 0 s–1 s–2 s–4 s–8 s–16 s–32 s einbezogen. Die Tabelle 3 zeigt die Ergebnisse der NLO-Parameterschätzung an solchen "Meßkurven" mit $\tau_R = 400$ s, die durch die genannten Sensorkonstanten simulativ beeinflußt worden sind. Dabei wurde in der NLO so gerechnet, als gäbe es keine Sensorträgheit. Die gewonnenen Aktivierungsparameter werden offensichtlich beträchtlich beeinflußt, wenn man ohne Beachtung der Sensorkonstante kinetisch auszuwerten versucht. Schon bei Zeitkonstanten im Be-

	Тур 3	Typ 4
$\ln(k_{ol}/s)$	21.00	21.00
E _{Al} /kJ	65.00	65.00
$\Delta H_1/kJ \text{ mol}^{-1}$	-70.00	-70.00
$\ln (k_{o2}/s)$	22.00	19.00
E _{A2} /kJ	70.00	70.00
$\Delta H_2/kJ \text{ mol}^{-1}$	-70.00	-70.00
Umgebungstemperatur/°C	20.00	20.00
Anfangskoncentration A/mol 1 ⁻¹	1.00	1.00
Anfangskoncentration C/mol 1 ⁻¹	0.00	0.00
Anfangskoncentration D/mol I ⁻¹	1.00	1.00
Reaktionsvolumen/ml	40.00	40.00
Wärmekapacität /J K ⁻¹	100.00	100.00
Wärmeübergangskonstante/W K ⁻¹	0.25	0.25
Reaktorzeitkonstante/s	400.00	400.00

Tabelle 2 Experimentelle Bedingungen der simulierten Folgereaktionen A \rightarrow C, C+D \rightarrow E

reich von 1 bis 4 s tritt dies auf. Für die Folgereaktionen 3 und 4 ist charakteristisch, daß sie umso weniger beeinträchtigt werden, desto stärker sich die Geschwindigkeiten der beiden Schritte unterscheiden, wobei jedoch nur der langsamere Schritt gemeint ist.

Abb. l zeigt für den Reaktionstyp 2 die Kurvenbeeinflussung durch Sensorträgheiten, wobei man davon ausgehen kann, daß die zugrundeliegende Reaktion nach 72 s vollständig beendet ist. Wenngleich die größten betrachteten τ_s – Werte

Abb. 1 Sensortemperaturen in Abhängigkeit von τ_s für den Reaktionstyp 2 wahrer Verlauf der Reaktion entspricht $\tau_s = 0$ s

von 32 s in der Praxis selten auftreten werden, so ist doch deutlich erkennbar, wie schwierig sich die Auswertung der Reaktion auch bei geringeren Zeitkonstanten τ_e gestalten muß. Da der Startbereich für die kinetische Bewertung von hoher Bedeutung ist, kann die kinetische Analyse prinzipiell ohne Beachtung der Sensorträgheit nicht erfolgreich sein. Dies ist auch in der Abb. 2 für die Folgereaktion Typ 3 dargestellt. Wie aus Tabelle 3 für diesen Typ hervorgeht, sind es besonders die Aktivierungsparameter für die zweite Reaktion, welche ohne Beachtung des τ_s -Wertes bis auf 50% reduziert werden können. Eine sinnvolle kinetische Analyse steht damit außer Betracht.

In den folgenden grafischen Darlegungen soll gezeigt werden, wie sich die Differenz zwischen der "gemessenen Kurve" und der durch nichtlineare Optimierung ohne

Reaktion Typ 1		Reakti	Reaktion Typ 2		
τ	$\ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$\ln(k_{o}/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	
0	21.000	65.000	21.000	65.000	
1	21.502	66.268	21.261	66.188	
2	22.001	67.527	23.336	71.658	
4	22.983	70.007	26.3771	79.720	
8	24.876	74.788	28.934	86.686	
16	28.335	83.529	28.725	66.724	
32	33.995	97.843	28.062	85.798	
τ,	$\ln(k_{ol}/s)$	$E_{A1}/kJ \text{ mol}^{-1}$	$\ln(k_{o2}/s)$	$E_{A2}/kJ \text{ mol}^{-1}$	
		Reaktio	n Typ 3		
0	21.000	65.000	22.000	70.000	
1	21.192	65.509	21.757	69.341	
2	21.368	65.976	21.497	68.636	
4	21.666	66.778	20.915	67.059	
8	22.053	67.868	19.465	63.128	
16	22.306	68.766	15.754	53.067	
32	22.795	70.471	9.384	35.870	
		Reaktio	n Typ 4		
0	21.000	65.000	19.000	70.000	
1	21.361	65.920	19.010	70.022	
2	21.715	66.822	19.021	70.045	
4	22.400	68.571	19.041	70.090	
8	23.673	71.820	19.087	70.191	
16	25.798	77.262	19.209	70.476	
32	28.502	84.253	19.570	71.341	

Tabelle 3 Ergebnisse der NLO-Parameterschätzung, $\tau_{R} = 400$ s ohne Berücksichtigung der Sensorkonstanten T.

Abb. 2 Sensortemperaturen in Abhängigkeit von τ_s für den Reaktionstyp 3 wahrer Verlauf der Reaktion entspricht $\tau_s=0$ s

Beachtung der Sensorkonstante gewonnenen Prozeßkurve gestaltet. Abb. 3 enthält beide Kurven, die sich beim ersten Blick wenig unterscheiden, deren Parametersätze in Tabelle 3 aber schon deutlich abweichen. Aus Abb. 4, in der die Differenztemperatur

 $\Delta T = T$ (Simulation mit NLO) – T (Simulation der erwarteten Meßkurve)

zwischen diesen Kurven dargelegt wird, wird erkennbar, wie im Bereich der ersten 60 s die größten Abweichungen zu erwarten sind. Bei der Bedeutung des Startbereiches zur Festlegung der Kinetik ist wiederum belegt, wie die Aufgabe der Parameterschätzung prinzipiell nicht befriedigend gelöst werden kann.

Interessant ist die Kurve in Abb. 4, die die langanhaltende Temperaturabweichung zwischen NLO und Meßsignal zeigt. Während in allen untersuchten Beispielen anfangs die NLO-Kurve über der Meßkurve gefunden wird, stellt sich nach drei- oder mehrfachem Wechsel des Vorzeichens ein quasistationärer Diffe-renzzustand ein. Dieser Zustand wird zumeist dann erreicht, wenn sich die Reaktion dem vollständigen Umsatz nähert oder bei Folgereaktionen der zweite Schritt kaum noch Beiträge zum Energieaustausch liefert, wie in den Abb. 5–7 dargestellt wird.

Die Differenzkurven unterscheiden sich aber nicht nur in der Zahl ihrer Vorzeichenwechsel, sondern auch in der Höhe des ersten Maximums, welches Werte bis zu 2 K annehmen kann. Bis zum Maximum der Reaktionskurve registriert man durchweg zweimaliges Wechseln der Differenztemperaturkurve.

Einfluß der Zeitkonstanten τ_R des Reaktors bzw. der TA-Zelle

Eine Untersuchungsreihe befaßte sich mit der gleichzeitigen Wirkung der Zeitkonstante des Reaktors bezüglich der Wärmeübertragung τ_R , die normalerweise aus

Abb. 3 Vergleich der simulierten erwarteten Meßkurve und der nach NLO Parameterschätzung simulierten Kurve ohne Beachtung von τ_s

Abb. 4 Differenz zwischen der nach NLO-Parameterschätzung simulierten Kurve und der simulierten erwarteten Meßkurve für den Reaktionstyp 2, mit $\tau_R = 400$ s und $\tau_s = 4$ s

dem Abklingverhalten zu ermitteln ist, und der Trägheit der Sensoranzeige, die in der Zeitkonstante τ_s ihren Ausdruck findet. Während τ_s wie bei den obigen Beispielen von 0 bis 32 s variiert wurde, sind Reaktorzeitkonstanten von 1600, 400, 100, 4 und 1 s einbezogen worden. In den Tabellen 4–7 sind die Ergebnisse der

Abb. 5 Differenz zwischen der nach NLO-Parameterschätzung simulierten Kurve und der simulierten erwarteten Meßkurve für den Reaktionstyp 1, mit τ_{R} =400 s und τ_{s} =4 s

Abb. 6 Differenz zwischen der nach NLO-Parameterschätzung simulierten Kurve und der simulierten erwarteten Meßkurve für den Reaktionstyp 3, mit $\tau_R = 400$ s und $\tau_s = 4$ s

Abb. 7 Differenz zwischen der nach NLO-Parameterschätzung simulierten Kurve und der simulierten erwarteten Meßkurve für den Reaktionstyp 4, mit τ_{R} =400 s und τ_{c} =4 s

NLO-Parameterschätzung in der Weise ermittelt worden, daß jeweils unter exakten Bedingungen simuliert wurde und die Auswertung derartiger Kurvenverläufe ohne Berücksichtigung der Sensorkonstanten erfolgte. Ohne auf die umfassende Beschreibung der Ergebnisse zurückzugehen, kann festgestellt werden:

l. Die Ergebnisse werden durch die falsche Wahl der Zeitkonstanten τ_s für hohe Zeitkonstanten des Reaktors/der TA-Zelle τ_R am wenigsten verändert.

2. Im Bereich kleiner Reaktorzeitkonstanten (siehe Tab. 4 für 1 s und Tab. 5 für 4 s) führt die Berechnung der Parameter schon dann zur vollständigen Unbrauchbarkeit der Ergebnisse, wenn der Sensor selbst mit einer Zeitkonstante von 1 s relativ schnell reagiert. Die Aktivierungsparameter werden in Tab. 4 verdreifacht, in Tab. 5 verdoppelt.

3. Bei Nichtbeachtung der τ_s Werte kommt es in Tab. 4 schon für 2 s, in Tab. 5 für 8 s zu einem Wechsel der Vorzeichen der Aktivierungsparameter. Dies zeigt das tiefgreifende Wechselspiel für solche Fälle, in denen die Werte τ_R und τ_s von ähnlicher Größe sind.

4. Ungeachtet dieser eminenten Parameterbeeinflussung führen die Parameterschätzungen aber stets zu einem befriedigenden Ergebnis, wenn sowohl die Zeitkonstante des Reaktors wie auch diejenige des Sensorsystems mit guter Genauigkeit in die Berechnung mit einbezogen werden.

Bei der oben beschriebenen Situation mußte versucht werden, die experimentell unumgängliche Existenz der Sensorträgheit in die Auswertung von thermoanalytischen bzw. Kalorimeterkurven einzubeziehen. An dieser Stelle bewährte sich das NLO-Programm TA-kin ein weiteres Mal. Es gelang, bei Einsetzen der experimen-

	Reakti	on Typ 1	Reakti	on Typ 2
τ _s	$\ln(k_{o}/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$\ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$
0	21.32	65.79	21.00	64.99
1	66.84	176.79	76.46	205.17
2	-55.97	-122.58	9.00	35.03
4	-525.71	-1267.69	-265.22	-656.87
8	-1515.87	-3681.46	-783.51	-1964.3
16	-3427.75	-8342.07	-1871.1	-4707.2
32	-8363.20	-20373.2	-1075.9	-27104.7
τ	$\ln(k_{o1}/s)$	$E_{\rm A1}/\rm kJ\ mol^{-1}$	$\ln(k_{o2}/s)$	$E_{A2}/kJ \text{ mol}^{-1}$
		Reaktio	n Typ 3	
0	20.753	64.399	21.593	69.009
		Reaktio	n Typ 4	
0	20.553	63.909	-44.658	-85.177

Tabelle 4 Ergebnisse der NLO-Parameterschätzung, $\tau_R = 1$ s ohne Berücksichtigung der Sensorkonstanten τ_e

tell vorab ermittelten Sensorträgheiten eine nichtlineare Parameterschätzung durchzuführen, die die Erwartungen voll erfüllte. Tab. 8 zeigt den Ablauf der Iteration für eine derartige Problemlösung. Aus ihr ist erkennbar, daß auch dann vorzügliche Ergebnisse erzielt werden konnten, wenn die Startwerte der Optimierung im Bereich von $\pm 20\%$ in Bezug auf den zu erwartenden Realwert vorgewählt worden waren. Wo eine solche Vorabschätzung nicht möglich ist, können durch Anwendung der bekannten linearisierenden Näherungsverfahren Startwerte in einem günstigen Bereich gefunden werden.

Die Güte der NLO-Berechnung geht daraus hervor, daß in Tabelle 8 die Parameter des Typs 2 voll getroffen worden sind, obwohl mit einer Sensorzeitkonstante von 32 s die ungünstigsten Voraussetzungen bewältigt werden mußten. Man beachte, daß TA-kin auch dann sein Problem löst, wenn zeitweilig die Parameter im Bereich negativer Vorzeichen geführt wurden. Bei einer derart erfreulichen Parameterschätzung ist es leicht möglich, den wahren Verlauf der Temperatur im Reaktor nachzuvollziehen, wodurch man die Sensorträgheit vollständig kompensiert hat. Die dazu gehörige Fehlerbetrachtung für die vom Sensor angezeigte Temperatur weist aus, wie die Differenztemperatur zwischen der gemessenen Temperatur und der durch nichtlineare Optimierung angepassten Temperaturkurve kleiner als 10^{-5} K gehalten werden kann.

Gemeinsame Parameterschätzung einschließlich τ_{s}

In einer gesonderten Untersuchung wurde das NLO-Programm TA-kin so erweitert, daß auch die Anpassung der Sensorzeitkonstante vom Programm vor-

	Reakt	ion Typ 1	Reakti	on Typ 2
τ _s	$ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$\ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$
0	20.996	64.99	20.999	65.00
1	48.669	132.52	46.696	130.27
2	67.950	179.59	69.124	187.24
4	70.013	184.68	104.000	275.84
8	-33.850	-68.57	135.612	356.19
16	-377.245	906 .01	-224.252	-554.13
32	-983.503	-2384.34	-590.500	-1479.00
τ,	$\ln(k_{o1}/s)$	$E_{A1}/kJ \text{ mol}^{-1}$	$\ln(k_{o2}/s)$	$E_{\rm A2}/\rm kJ\ mol^{-1}$
		Reaktio	on Typ 3	
0	21.04	65.1	22.19	70.5
1	167.34	422.2	274.77	686.1
4	418.59	1035.4	434.14	1074.0
		Reaktio	on Typ 4	
0	20.89	64.73	16.70	64.39

Tabelle 5 Ergebnisse der NLO-Parameterschätzung, $\tau_R = 4$ s ohne Berücksichtigung der Sensorkonstanten τ_s

Tabelle 6 Ergebnisse der NLO	Parameterschätzung,	$\tau_{\rm R} = 100 \text{ s ohne}$	Berücksichtigung der
Sensorkonstanten τ _s			

	Reaktion Typ 1		Reaktion Typ 1		Reakti	on Typ 2
τ_{s}	$\ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$		
0	21.0004	65.001	20.9999	64.9998		
1	22.4754	68.661	23.2605	70.9733		
2	23.9537	72.329	25.2436	76.2216		
4	26.8869	79.606	28.2139	84.1202		
8	32.5499	93.656	31.1336	92.0378		
16	42.7879	119.055	31.9413	94.6935		
32	59.3381	160.100	30.4435	91.6078		
τ	$\ln(k_{o1}/s)$	$E_{\rm A1}/\rm kJ~mol^{-1}$	$\ln(k_{o2}/s)$	$E_{A2}/kJ \text{ mol}^{-1}$		
		Reaktion	а Тур 3			
0	21.000	65.00	22.000	70.00		
1	21.724	66.81	21.526	68.81		
2	22.440	68.61	21.059	67.64		
4	23.833	72.10	20.159	65.39		

τ,	$\ln(k_{o1}/s)$	$E_{\rm A1}/\rm kJ~mol^{-1}$	$\ln(k_{o2}/s)$	$E_{\rm A2}/\rm kJ\ mol^{-1}$
		Reaktio	п Тур З	
8	26.439	78.63	18.532	61.31
16	30.862	89.72	15.993	54.94
32	37.071	105.33	12.897	47.14
		Reaktio	п Тур 4	
0	21.000	65.00	18.998	70.00
1	21.826	67.06	20.742	74.25
2	22.646	69.11	22.309	78.08
4	24.254	73.13	25.041	84.74
8	27.039	80.76	29.428	95.43
16	32.664	94.13	36.238	112.01
32	40.598	113.98	48.397	141.64

Tabelle 6 (kontinuirt)

Tabelle 7 Ergebnisse der NLO-Parameterschätzung, $\tau_R = 1600$ s ohne Berücksichtigung der Sensorkonstanten τ_s

	Reakti	on Typ 1	Reakti	on Typ 2
τ	ln(k _o /s)	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$ln(k_o/s)$	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$
0	21.0000	65.0000	21.0000	65.0001
1	21.2896	65.7421	22.9168	70.1041
2	21.5772	66.4789	24.5405	74.4406
4	22.1449	67.9334	26.7459	80.3920
8	23.2441	70.7507	28.0605	84.2077
16	25.2710	75.9494	25.7821	78.9566
32	28.5993	84.5069	19.3563	63.2306
τ,	$\ln(k_{o1}/s)$	$E_{\rm A1}/\rm kJ~mol^{-1}$	$\ln(k_{o2}/s)$	$E_{\rm A2}/\rm kJ~mol^{-1}$
		Reaktion	п Тур 3	
0	21.000	65.00	22.000	70.00
1	21.558	66.40	22.429	71.20
2	22.218	68.06	23.016	72.85
4	23.610	71.54	24.288	76.42
8	26.169	77.95	26.511	82.64
16	30.312	88.37	29.720	91.64
32	35.831	102.31	33.326	101.89

τ	$\ln(k_{o1}/s)$	$E_{\rm A1}/\rm kJ~mol^{-1}$	$\ln(k_{o2}/s)$	$E_{A2}/kJ \text{ mol}^{-1}$
		Reaktion	n Typ 4	
0	21.000	65.000	18.999	70.000
1	21.313	65.804	19.074	70.196
2	21.618	66.588	19.151	70.400
4	22.203	68.093	19.311	70.822
8	23.264	70.827	19.660	71.742
16	24.938	75.164	20.499	73.958
32	26.721	79.887	22.936	80.392

Tabelle	7	(kon	tinu	irt)
		`		

Tabelle 8 Ablauf der Iteration für den Reaktionstyp II unter Beachtung von $\tau_s = 32$ s Batch-Reaktor-Modell mit Parametern $\ln k_o$ und E_a/kJ mol⁻¹ Datensatzwichtung mittels Datenanzahl, keine Einzelwertwichtung 501 Fehlergleichungen

Radius	Stppar	FQS(w)	FQS	lnk _o	$E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$
1.56391	0.00000	3.24976E-05	1486.82	-15.2908	-28.2536
0.0683473	0.00000	3.58707E-06	164.115	-13.4401	-25.1636
0.136868	5.89303E-05	2.79241E-06	127.757	-10.3059	-17.1208
0.273735	2.31673E-05	1.76699E-06	80.8428	-4.13278	-0.788340
0.547471	5.52584E-06	4.32943E-07	19.8079	8.24818	31.7877
0.490320	0.00000	3.73942E-08	1.71085	19.3808	60.8496
0.0655423	0.00000	3.88291E-11	0.00177650	20.8831	64.6972
0.00511722	0.00000	9.34590E-15	4.27591E-07	20.9998	64.9994
9.96824E-06	0.00000	8.87723E-15	4.06148E-07	21.0000	64.9999

 $\ln k_{0} \approx 20.99998 \pm 0.00019$

 $E_a = 64.99994 \pm 0.00048 \text{ kJ mol}^{-1}$

Statistische Sicherheit für Konfidenzintervalle P=0.950

Norm des Residuum=9.4219E-08

Ungewichtete Fehlerquadratsumme=4.0615E-07

genommen werden konnte. Dadurch wurde die Zahl der anzupassenden Parameter auf 4 bzw. 5 erhöht. Der Rechengang zeichnet sich dadurch aus, daß die Zahl der Iterationen deutlich größer wurde und andererseits die Fehlerquadratsumme in der Anpassung eine merkliche Vergrößerung erfuhr. Zusammenfassend soll hier nur festgestellt werden, daß jede Erhöhung der Zahl der anzupassenden Parameter zwar stets ein Ergebnis nach den Gauß-Newton-Vorstellungen erbringt, jedoch die Abweichungen an den Einzelparametern größer werden. Die Ermittlung der aktuellen Sensorzeitkonstanten in der Apparatur ist also unbedingt experimentell durchzuführen. Zusammenfassend kann man feststellen, daß die Thermische Analyse nur dann zu befriedigenden und reproduzierbaren kinetischen Aussagen führt, wenn auch alle in den Prozeß hineinsteuernden Bedingungen vom Experimentator, wie vom auswertenden Programm mit hoher Genauigkeit berücksichtigt werden.

Die Summe dieser Erkenntnisse sagt, daß Kinetik mit Hilfe der Thermischen Analyse sicher eine sehr reizvolle Aufgabe ist, aber mit Erfolg nur von dem bewältigt wird, der sich der harten Mühe unterzieht, alle während des Experimentes notwendigen Bedingungen genau einzuhalten und vollständig in die Rechnung zu übernehmen. Alle kinetischen Untersuchungen ohne diese genaue, vollständige Kenntnis können zu keinem akzeptablen Ergebnis führen.

Literatur

- 1 H. J. Borchardt und F. Daniels, J. Am. Chem. Soc., 79 (1957) 41.
- 2 E. Koch, Nonisothermal Reactions, Acad. Press, London 1977.
- 3 T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881.
- 4 A.W. Coats und J. P. Redfern, Nature (London) 201 (1964) 68.
- 5 H. Anderson, W. Besch, und D. Haberland, Thermal Analysis, Proc. 4th ICTA Budapest 1974, Vol. 1, (Ed. I. Buzás), Akadémiai Kiadó, Budapest 1975, p. 215.
- 6 Thermokinetic Anatysis Multiple Scan, Netzsch KG/Selb.
- 7 Information bzw. Software TA-kin über Prof. Anderson/Autor.
- 8 Software for investigation system of chemical processes thermal safety Application package "KINETICS - MK" Version 4. I, GIPH, Sankt Petersburg 1994.
- 9 BatchCad Ltd, 'RATE Operating Manual', Newcastle upon Tyne, 1994.
- 10 N. Eisenreich, J. Therm. Anal., 19 (1980) 289.
- 11 H. L. Anderson, A. Kemmler und R. Strey, J. Thermal Anal., 47 (1996) 543.